AOPA Expo 2008 Seminar Notes San Jose, CA

Surviving After a Forced Landing

Some Statistics:

- 35% survived the initial forced landing
 - 21 were injured, 4 survived the first 24 hours
 - o 14 were uninjured, 7 survived after 72 hours

Questions to ask:

- How seriously do I take this?
- Am I prepared for the stresses of survival?

Post-Crash Survival

- 1. <u>Psychology of survival (i.e. the will to survive)</u>
 - Post-crash survival is 90% mental
 - Must have knowledge of the search-and-rescue system
 - In order of survival value:
 - 1. Oxygen
 - 2. Shelter
 - 3. Rest
 - 4. Water
 - 5. Food
 - STOP mnemonic:
 - o Sit
 - Think
 - Observe
 - o **P**lan
- 2. Search and Rescue
 - File a flight plan! (it's cheap and it works)
 - (121.5Mhz specific) If a VFR flight plan was filed and you are overdue, it will be 2.5 *hours* into your survival situation before the actual physical search begins (assuming the distress call was not received).
 - Make occasional position reports [to FSS]. This is especially useful on long flights
 - Plan to spend at least a night, post-crash
 - SARSAT takes 2 orbits (3hr 20min) to pinpoint a [121.5Mhz] ELT signal within 11nm.
 - But 406Mhz ELTs are near-instantaneous
 - In general, you will be found <u>2 days sooner</u> with a functional ELT

- The Air Force Rescue Coordination Center estimates that as many as 12% of ELTs do not activate when they are supposed to
- Leaving your cell-phone on (VFR, and see FAR 91.21(b-5)) can help search-and-rescue teams
- 3. Surviving Extreme Environments
 - Sweating (See "Danger of Dehydration" handout)
 - Don't get in the plane thirsty
 - Hot-land environments
 - Stay out of the sun
 - Stay off the desert floor (at least 1 foot)
 - Don't spend energy in the daylight
 - <u>GET WATER</u> (see handout on two water-collection methods)
 - Note: Hypothermia *can still occur* when the air temperature is above freezing
 - <u>Cold-land environments</u>
 - Dress for the external environment (or at least bring appropriate clothing along)
 - 50% of all body heat is lost through the head and neck
 - Stay covered
 - Frost-bite is irreversible
 - Snow-blindness: wear sunglasses
 - Don't eat snow! Melt it first, then drink it
 - i. Otherwise, it can lead to hypothermia
 - Clothing
 - i. Wet clothing in the wind will draw off body heat **20 times faster** than wind alone
 - ii. A wool sweater has the greatest insulative capacity
 - iii. A wool sweater is the best material for retaining its insulative capacity when wet
 - Your clothing will be your most immediate source of shelter
- 4. First Aid / Self Aid
 - ABC mnemonic (order of treatment):
 - Airway
 - **B**reathing
 - Circulation
 - The recommended method for opening a person's airway if it is obstructed is by tilting the head back, or the jaw thrust
 - Give CPR only if you have been trained to

- Hemorrhage control: Treat quickly and aggressively!
- Types of bleeding
 - Arterial
 - Venous
- Don't take off saturated bandages! It disrupts the clotting
- Pressure points for bleeding: There are only 12 of them, so learn them
- Only apply a tourniquet as a *last resort*
 - Mark the time it was applied: you have 2 hours before the extremity below will need blood

Single-Pilot IFR

- Single-pilot IFR accounts for more accidents than 2-pilot crews
- 45% of pilots in weather-related accidents were instrument rated
- The main factor: workload (multi-tasking)
 O But there are ways to do it safely: <u>it's all about priority</u>
- Regulations & Procedures: they take the decision process out
- **<u>SRM</u>** (CRM for single-pilot operations)
- 1. Preparation
 - Set personal minimums
 - Pre-flight (aircraft, weather, route, etc)
 - Known the risks (both present & future)
 - You aren't really alone (ATC, passengers, etc)
- 2. <u>Resource Management</u>
 - Yourself
 - "Virtual Copilots"
 - a. Passengers
 - b. Equipment
 - i. GPS/FMS ii. Autopilot
- <- The most important piece of equipment
- c. Charts, plotters, etc
- d. ATC
- You must know how to use the technology (and their limitations)
- In a 2-pilot crew, a re-route is a 2-person job
- 3. Decision Making
 - Decision making is a continual process
 - a. Anticipate
 - b. Recognize
 - c. Act
 - d. Evaluate
 - Pay attention and be aware of any changes
 - Memorize emergency checklists
 - Talk the procedures out loud to yourself while performing them
 - Situational Awareness: Knowing...

- Where you are
- Where you are going
- \circ How you will get there
- And always have an out
 - i. Best to plan this on the ground
- 4. Communication
 - ATC, FSS, Passengers
 - Other pilots
 - Working with ATC
 - a. Listen before speaking
 - b. Reference position to a local navaid/fix
 - c. Make deviation requests early
 - i. (i.e. If you hear other aircraft ahead of you on the same route are going missed, better to deviate now than wait)
 - d. Know when to say "Stand By"
 - e. Ask for an initial heading if you need time to program in a route change
- <u>Passengers</u>
 - Maintain a sterile cockpit
 - They can help with see-and-avoid
 - Keep them under control

• Last component of SRM: Yourself!!

- Know your current proficiency
- Know your equipment
- Know your health
- Stay organized -> Build a "nest" in the cockpit
- If you fly IFR infrequently, get a 6-month IPC

<u>Stall/Spin Awareness:</u> What you don't know CAN hurt you

- Stalls and Spins were first recorded by the Wright brothers in 1912
 - These have been with aviation since the beginning
- FAA-RD-77-26, 09/76: "General Aviation Pilot Stall Awareness Study"
- First rule: fly the plane
- Study: Extra stall training made no difference in accidental stalls
 - Most planes have their stall warning on only one wing and no AOA indicator
 - The other wing could stall first
 - **BUT**, additional <u>spin</u> training <u>DID</u> decrease accidental spins
- True cause of spins: <u>Excess yaw @ stall = spin</u>
 - (The saying "no stall, no spin" is simplistic)
 - Causes of excess yaw:
 - Adverse yaw (ailerons)
 - Torque, p-factor, slipstream (engine)
 - Improper footwork (rudder)
- When flying <u>VFR</u>, trust your senses
 Stop staring at the ball
- Turn coordinator ball:
 - It has a bank limit (and a small amount of lag)
 - \circ $% \left(N_{1},N_{2},N_{1},N_{2},N_{1},N_{2},N$
 - Use the ball for fine-tuning
- Swept-wing planforms:
 - Stalls at the wingtip first, aggressive stall with pitch up, lateral control immediately lost
 - *Excessive yaw can turn a basic rectangle planform wing* (good stall characteristics) *into acting like a swept-wing*
- Spin Recovery (discussed in detail in next topic)
 - Power
 - Ailerons
 - **R**udder
 - Elevator

The PARE Procedure

- 2 necessary ingredients for a spin: (1) yaw, (2) stall
 - Sources of yaw: rudder use, adverse yaw, engine effects
- Terms
 - A procedure is "what" needs to be done
 - A technique is "how" it will be done
 - <u>"Elevator Through Neutral"</u> refers to moving the elevator toward which ever way is neutral (direction agnostic)
- In spin recovery, the elevator is the last input to move
- Elevator magnitude of movement depends on whatever it takes to stop whatever is still happening
- Sequential inputs tend to be *more effective* than simultaneous inputs
- Eliminate power and aileron inputs early
- Rudder <u>followed by</u> elevator is a critical sequence of events
- You can't do stall recovery while still in a spin!
- <u>Spin Recovery</u>
 - 1. <u>P</u>ower <- Off (i.e. to idle)
 - 2. <u>A</u>ilerons <- Neutral, Flaps up (if they were down)
 - 3. <u>**R**</u>udder <- <u>FULL</u> opposite to yaw direction, <u>BE ABRUPT!</u>
 - Put the other foot on the floor to ensure that you are using *full* opposite rudder
 - 4. <u>E</u>levator <- Through neutral (Not before rudder application, but <u>don't</u> <u>wait</u> until rotation is finished)
 - 5. Hold the above inputs until rotation stops!
 - a. Spin recovery may time TIME and ALTITUDE
- Once the spin is done
 - 1. Rudder <- Neutral
 - 2. Elevator <- Easy pull, back to straight-and-level
- Turn Coordinator ball is <u>useless</u> in a spin
 - The needle/airplane will be wing-low in the direction of the spin (upright spins only)
- The "Hands Off" (Beggs method)

- Not always as good as the NASA "PARE" method
- It might also not work at all
- <u>Spin Physiology</u>
 - 1. Channelization of sensory inputs (similar to "target fixation")
 - 2. Inability to judge the passage of time
 - 3. Limited control of muscular inputs (e.g. freezing at the controls)
 - 4. VOD (vestibulo-ocular disorganization) i.e. disorientation
- Most aircraft have a one-turn spin margin of error
 - Most spin-approved aircraft will outlast the pilot's physiological limit
 - Spin will appear to speed up at the physiological limit, when really it is stabilizing: this is VOD
- Once recovered from a prolonged spin, post-rotatory nystagmus or vestibular sensations can fool the pilot into re-entering a spin
- All types of spins have the same recovery method (PARE)

Single-Pilot Flying Strategies

- If you're working hard at flying, you're probably doing it wrong
- Cockpit wisdom comes from understanding our human nature
 - Understanding & recognizing external pressures
 - What compels us to act
- Aircraft today are easier to fly, but not to operate
- We don't fly "all-weather" aircraft
- We don't have airline-like training
 - Or any of the other resources they have (dispatchers, copilot, etc)
- We are not a scheduled airline!
- <u>Biggest single-pilot concerns</u>
 - Workload <- Talking to yourself can help
 - $\circ~$ The 2 most important things in aviation...are the next 2 things
 - Be proactive, not reactive
- Verbal Checklists:
 - 1. Horizontal Movement
 - a. Where am I?
 - b. Where am I going?
 - c. How do I get there?
 - 2. Vertical Movement
 - a. How low?
 - b. How long?
 - c. Which way?
 - 3. Nav Equipment
 - a. See it
 - b. Say it
 - c. Check it
- "Stand By" <- The two most important words to learn
- Getting ATIS: Ask the controller if you can go off frequency for 3 minutes to get the ATIS. If being vectored, you can ask the controller for the ATIS

- Routing changes: See "Single Pilot IFR"; ask for an initial heading
- Asking ATC when they are busy:
 - Ask questions that only require a <u>yes or no</u> answer
- Tell ATC what you need:
 - You can ask for anything you need/want
- Ask ATC/FSS to explain/define
 - (e.g. weather VOR references, etc)
- Use your "time machine"
 - If you need time [to think], <u>slow down</u> (but notify ATC)
- NASA study -> For single-pilot flying, a single-axis (wing-leveler) autopilot is the best. Multi-axis autopilots tend to remove the pilot from being mentally engaged

Managing Your Engine for Peak Performance

- Avoid engine starts (when possible)
- Lean aggressively
- Have as few thermal cycles as possible
- High MP/low RPM
- Don't keep pre-heaters plugged in all the time if the temperature swings above/below freezing: this can lead to condensation
- Don't pull the prop through if you're not going flying
- Don't run the engine for 20 minutes if you aren't going flying

Lycoming service instruction

- Don't lean above 75%
 - \circ <=75% power: lean to 50* ROP
 - \circ <=65% power: lean to peak regardless of altitude
- Note max CHT
 - Continental: 400*F, Stay below 460*F redline
 - Lycoming: 425*F, Stay below 500*F redline
 - CHTs between 350*F and 380*F in cruise
 - Oil Temp of 180*F in cruise
- Lean for all ground taxi operations
 - No permanent damage can be done on the ground by over-leaning (though the engine may stop if leaned too much)
- Engine monitors are great diagnostic tools, and pay for themselves
- 125*F ROP = Best power
 - Good for high-and-hot takeoff operations
- 45*F LOP = Best economy
- Minimize heat up & cool down cycles
- No part-throttle takeoffs
 - We should ignore engine-life concerns during takeoff
 - Make the climb from " V_1 " to 1000' AGL as quickly as possible
- Reducing power (variable-pitch prop): Reduce 2" MP in 2 minutes
 - \circ Equates to ~50*F CHT/minute

- Use cowl flaps to control CHTs
- Any power setting in the POH is an approved setting
- Consider the accuracy of the tach and MP gauge
- Engine actually likes over-square MP/RPM
 - Propeller operates better at low RPMs
 - Of course, any turbo-charged engine will be operated over-square
 - Many POHs actually list over-square settings
 - HP loss to friction is lower at lower RPMs
- Fly frequently
- See hand-out for 6 tools for determining engine health